Context-Dependent Assessment of QSP Models: industry perspective & a proposed approach

ASCPT 2019 - QSP preconference

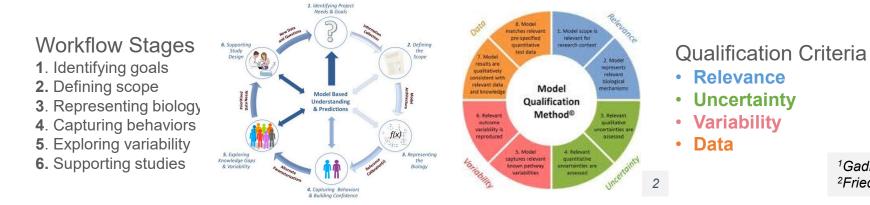
Saroja Ramanujan

IQ-CPLG-QSP assessment subteam: Jason Chan, Christina Friedrich, Craig Thalhauser

A Flexible Approach for QSP Model Assessment

Rationale for "Assessment Approach"

- Need ways to *assess confidence* in model predictions and appropriate interpretation/use
- Need a *common approach* to support broad applicability and consistent use and interpretation


But this must also be:

- *Consistent* with and synthesized from existing best practices in QSP
- *Customizable* to the diversity of applications of interest ("context") & modeling approaches

Subgroup of IQ consortium CPLG-QSP reviewed/discussed past models, guidances, etc to distill an overarching flexible approach for context-dependent assessment of QSP models

• invited perspective piece submitted to CPT-PSP special issue

Build on Current Guidances & Best Practices

¹Gadkar et al, 2016, CPTPSP ²Friedrich, 2016, CPTP-PSP

Different "Areas" of QSP Models Require Assessment

Workflow Stages

 Identifying goals
 Defining scope
 Representing biology

- 4. Capturing behaviors5. Exploring variability
- 6. Supporting studies

Assessment Areas

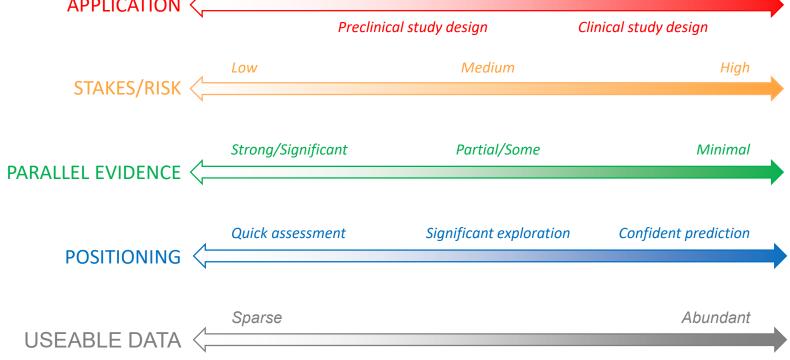
Biology (1-2)
Implementation (3)
Simulation (4-5)
Robustness

(5-6)

- Are the biological mechanisms, hypotheses, and data relevant to the question at hand considered?
- Are the assumptions and hypotheses plausible and appropriate?
- Are alternate hypotheses considered?

Are the model structure and parameter ranges appropriate for the question at hand?

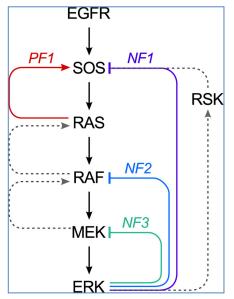
- Was there technical QA/QC of the implementation and testing of the model structure?
- Can the model capture the appropriate range of behaviors?
- Does the model exhibit appropriate behaviors and sensitivities to parameters or perturbations?
- Does the model reproduce "calibration/training" data?
- Can the model predict behaviors or data it was not calibrated against (validation/testing)?
- Has the robustness of the predictions to potential biological uncertainty and variability been explored?



Different "Areas" of QSP Models Require Assessment

Asse	Workflow 1. Identifying 2. Defining s 3. Represer 4. Capturing 5. Exploring 6. Supporting ssment Areas	g goals scope nting biology g behaviors variability				
	Biology (1-2)	Biological relevance & plausibility Main hypotheses & assumptions Alternate hypotheses				
		Technical QA/QC				
	Implementation (3) Simulation (4-5)	Model structure & parameter ranges				
		Sensitivities and behaviors				
		Reproduction of behaviors (calibration/training)				
		Prediction of behaviors (validation/testing)				
	Robustness (5-6)	Predictions, variability and uncertainty				

Assessment MUST Be Context-Dependent

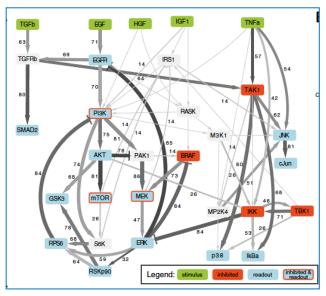


Assessment of Model Biology & Implementation

	Focus	Assessments		
BIOLOGY (1-2)	Relevance & plausibility Main hypotheses, assumptions Alternate hypotheses	 Appropriate goal/questions Biological rationale and justification Literature evidence Biology/therapeutic area expert endorsement 		
	Assessments			
	Technical QA/QC	 Appropriate modeling formalism Appropriate representation of biology Correct implementation: scripts to test equations, parameters, units Appropriate and stable numerical approach 		
IMPLEMENTATION (3-4)	Model structure & pameter ranges	 Dynamical features Potential range of behaviors/outputs Relevant range of parameters/inputs 		
	Sensitivities and behaviors	 Targeted/specific sensitivity Local sensitivities (Local SA) Global sensitivities (Global SA) Qualitative phenotypes Literature support, expert input on results 		

MAPK: Different questions require different implementations

Signaling feedbacks and complex dynamics of MAPK

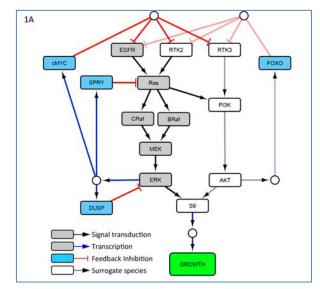


Kochańczyk et al 2017, Sci Reports

Focus: dynamical behaviors Formulation:

- ODE for feedback dynamics
- Markov chain w stochastic for noise
- PDE for spatiotemporal exploration

Pathways influencing drug resistance in CRC



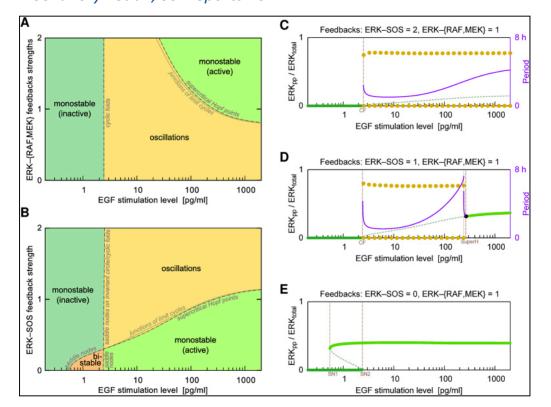
Eduati et al 2017, Cancer Res

Focus: pathways leading to resistance Formulation:

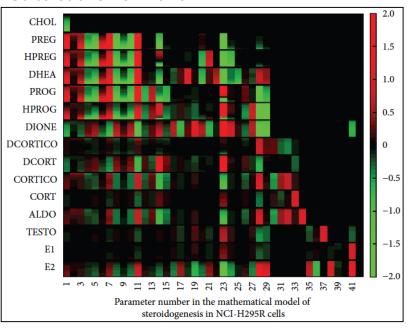
- Logic-ODE for signaling
- elastic-net model connects to growth

Clinical MAPK targeting/rebound in BRAFmut CRC

Kirouac et al 2017, NPJ Sys Bio & App

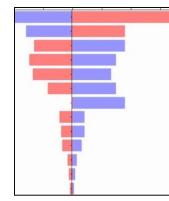

Focus: clinical response & resistance Formulation:

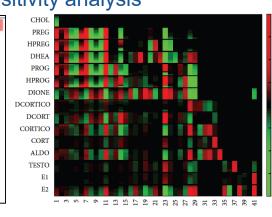
- Algebraic + ODE for signaling;
- ODE for growth

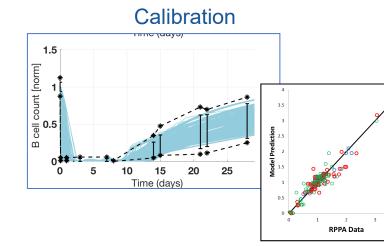

Model & Parameter analyses probe range of behaviors

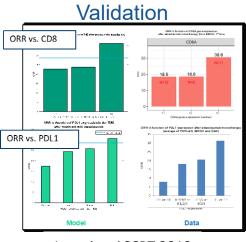
- Dynamical and/or equilibria analysis: to assess dynamical behaviors
- Parameter sensitivity: to assess feasible "outcomes" and dependencies
- Topology and network analysis: to identify "hubs", modularity, connectivity, redundancies, etc
- Model reduction: to simplify model structure

Dynamical analysis Kochańczyk et al , Sci Reports 2017


Sensitivity analysis Saito et al J Tox 2016



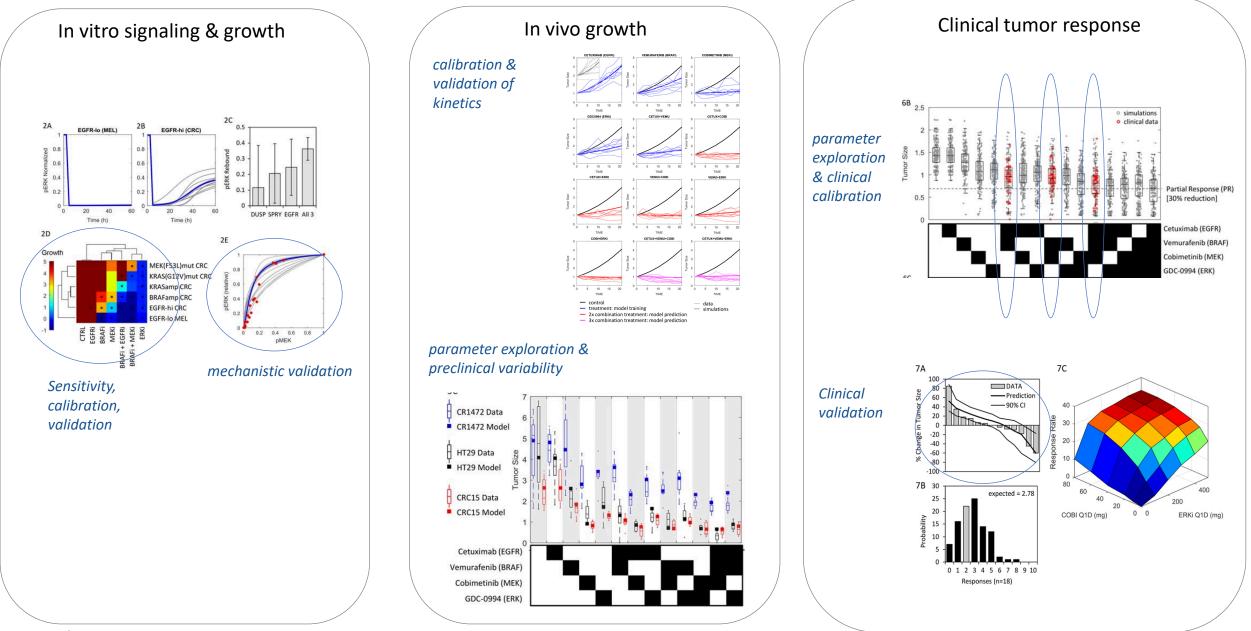

Assessment of Model Simulation


	Assessment Focus	Specific Assessments
SIMULATIONS (4-5) Sensitivities and behaviors		 Targeted/specific sensitivity Local sensitivities (Local SA) Global sensitivities (Global SA) Qualitative phenotypes Literature support, expert input on results
	Reproduction of behaviors (calibration/training)	 Qualitative or quantitative comparison to calibration data (subsystem or system level)
	Prediction of behaviors (validation/testing)	 Qualitative or quantitative comparison to validation data (subsystem or system level)

Sensitivity analysis

Lemaire, ASCPT 2019

-2.0

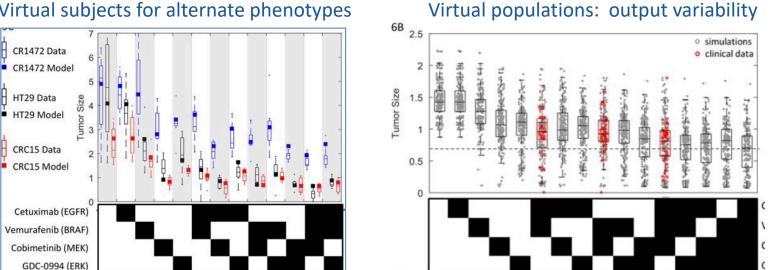

-0.5

-1.0

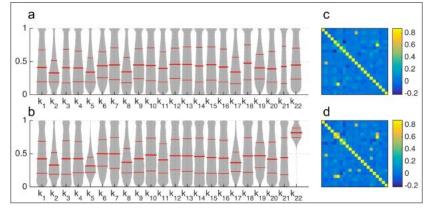
-1.5

Saito et al , J Tox 2016

Sensitivity, calibration, validation test fidelity to data/knowledge


Kirouac et al 2017, NPJ Sys Bio & App

Assessment of Robustness of Predictions

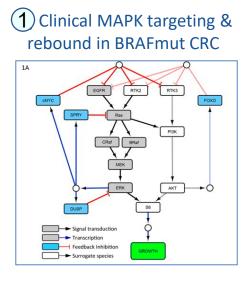

	Assessment Focus	Specific Assessments			
ROBUSTNESS (5-6)	Predictions, variability, and uncertainty	 Comparison of input/output range, distribution, etc. with data Results with alternate parameterizations or structures 			

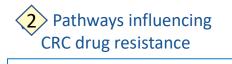
F

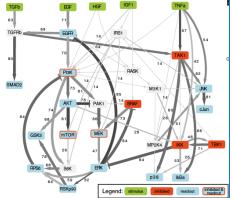
Virtual populations: Input variability

Allen et al, 2016, CPT-PSP

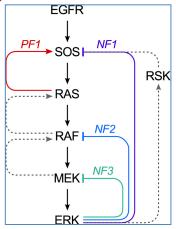
Kirouac et al 2017, NPJ Sys Bio & App

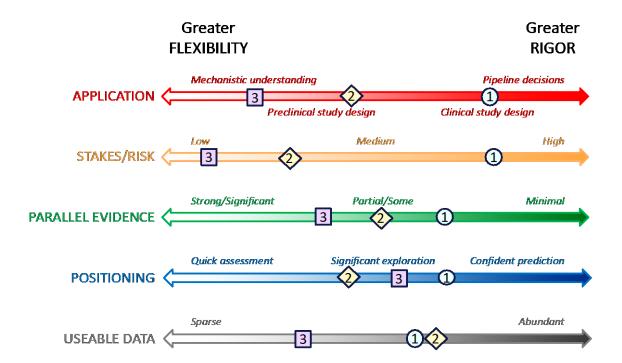

ASSESSMENT	ASSESSMENT APPROACH							
AREA (workflow stage)	Assessment Focus (colored by MQM criteria)	Specific Assessments	Reporting					
BIOLOGY (1-2)	Relevance & plausibility Main hypotheses, assumptions Alternate hypotheses	 Appropriate goal/questions Biological rationale and justification Literature evidence Biology/therapeutic area expert endorsement 	DocumentationModel schematic					
IMPLEMENTATION	Technicl QA/QC	 Appropriate modeling formalism Appropriate representation of biology Correct implementation: scripts to test equations, parameters, units Appropriate and stable numerical approach 	 Documentation Detailed model diagram Model equations Variable list (definitions, units, constraints) Parameter list (definitions, units, ranges, refs.) Test scripts & results Model file (executable) 					
(3-4)	Model structure & parameter ranges	 Dynamical features Potential range of behaviors/outputs Relevant range of parameters/inputs 	Graphical resultsDocumentation/lists					
	Sensitivities and behaviors	 Targeted/specific sensitivity Local sensitivities (Local SA) Global sensitivities (Global SA) Qualitative phenotypes Literature support, expert input on results 	 Documentation of approach & interpretation Tornado plots, heat maps, or similar List of critical sensitivities & how they are explored for predictions Example simulation plots 					
SIMULATIONS (4-5)	Reproduction of behaviors (calibration/training)	Qualitative or quantitative comparison to calibration data (subsystem or system level)	 List of calibration experiments Plots comparing simulation vs data (eg VPCs) Criteria metrics if used 					
	Prediction of behaviors (validation/testing)	• Qualitative or quantitative comparison to validation data (subsystem or system level)	 List of validation experiments Plots comparing simulation vs data (eg VPCs) Criteria metrics if used 					
ROBUSTNESS <i>(5-6)</i>	Predictions, variability, and uncertainty	 Comparison of input/output range, distribution, etc. with data Results with alternate parameterizations or structures 	 Tabular or graphical comparison of simulated vs data variability Graphs of variability in input (parameters) and outputs (typically states) Documentation of critical uncertainties & variabilities 					


REPORTING: "Best Practices to Maximise Reuse of QSP Models: Recommendations of UK QSP Network"

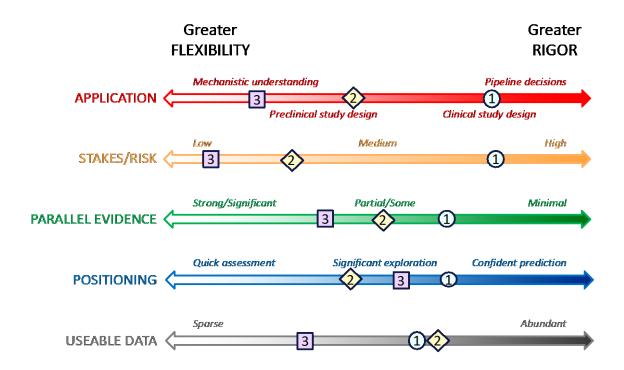

Cucurull-Sanchez et al CPT-PSP 2019, pre-print

QSP Workflow Step		Recommendations			Relevant References			1. Identifyin		
da nonion seb		Mathematical	Computational					Needs &	Goals	
1. Purpose and	Context of the Model	Ask 'Do I need a Engage with stak Formulate clearly	model?" and "What is the purpose of the model?" eholders: "end users" and "domain experts" the questions addressed, their context, expected in e model, and rationale for the selection of QSP as m		[11] Peterson & Riggs (2015) [26] Timmis et al. (2017) [27] Nibbe et al. (2017) [28] Gadkar et al. (2016) [29] Friedrich (2016)			6. Supporting Study Design	2. Defining the Scope	A. Model action of the second of th
2. Model structure and modelling methodology	i. Model domain and general structure	 Provide a scheme Figure 2) 	e model domain: therapeutic area, biological scale, b stic representation of the model domain and genera ide, follow standard graphical notation (e.g. SBGN)				Model E Underst & Predic	nding	envirent with and knowledge G. Relevant externme B. Relevant Method®	
	i. Model formulation or algorithm			Use i the system be	Box 1 1261 Timmic et al (2017) input data from systems under experimental o keing modelled vide a detailed model parameter description, i		Table 1 [38] Sarkans et al. (2017)	S. Exploring Knowledge Gogs & Variability	3. Representing the Biology	ourdability is encoded and a second of the s
	i. Model solving	Explain any abstr Report units for e State the method		o defin o para o units	ibol/name of parameter inition ameter value (or range of values) is roes used to obtain it (literature citation, data)	base derivation from other	[39] Marshall et al. (2016) [27] Ribba et al. (2017) [40] Bonate et al. (2012)	4. Capturing & Building t	Behaviors Confidence	912
	and simulation method	system of equations (e.g.) order implemented via the MATLAB() Provide absolute; value Provide software		parameters, e o detai assumed) and variability, exi • Cons	thes used to obtain it interactine clearbor, data experiment presented in the same report/arti- ails of how the parameter value was determin id whether the underlying data has any limitati- xcluded data points, etc) sider using a tabular format to present this int sider providing actual data files along with coo	ide, in silico estimations, etc) ed (measured directly, fitted or tions (suspected errors, outliers, high formation (e.g. Table 1)				
	. Code files	Share code and n supplementary n public online mov cadamic author public platforms		o quali o assu and how they	varibe in detail: iitative and/or semi-quantitative knowledge o umptions (pharmacological, physiological, dise y were tested uus potential limitations of model in the conte ions	ease, data, mathematical, statistical),				
		Ensure code is ea Whenever possib		Test o elími o ensu	t code for consistency: ninate detected coding errors ure solutions or límit conditions reached by th when A and B are set to zero)	ne model are correct (e.g. A + B -> C	[41] Anderson et al. (2007) [43] Hicks et al. (2015) [63] Nestorov et al. (1999)			
	۰. ۱	1		. respon i.e. not input d o identifi o paramy	Model validation	 explain its relevance to Plot model sim 	the model context ulations overlaying the correspo perceived variability (e.g. standa	wiedge used to validate the model, and onding experimental data onto them, with nd error bars, confidence intervals,	[41] Anderson et al. (2007) [43] Hicks et al. (2015) [70] Lu et al. (2014) [71] Kanodia et al. (2014) [72] Ortega et al. (2013) [73] Karelina et al. (2012) [74] Peterson and Riggs (2012) [76] Agoram (2014)	
				to defi model	Model results, application and im	 Provide the simanswers Qualify the typ discovery, a confirmatio Describe the discovery of the discovery	nulation plots and/or outcome n e of knowledge acquired throug in and/or a learning of a miscon ecisions that the modelling exer	ose enabled for the different	[39] Marshall et al. (2016) (77] Sheppard (2011) [11] Peterson & Riggs (2013) (73] Hendricks (2013) (78] Kansal & Trimmer (2005)	
					7	 possible, quantitatively Describe the in 		regulatory) - qualitatively and, whenever rcise beyond the initial stakeholders, into financial figures.	[79] Miligan et al. (2013) [80] Allerheiligen (2014) [81] Bueters et al. (2013) [82] Nayak et al. (2018)	


Different contexts, Different models



3 Complex dynamics of MAPK w feedbacks



- 1: Kirouac et al 2017, NPJ Sys Bio & App
- 2: Eduati et al 2017, Cancer Res
- 3: Kochańczyk et al 2017, Sci Reports

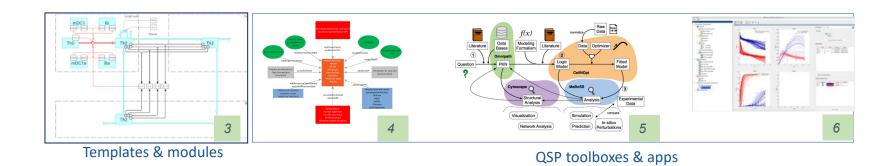
Different contexts, Different models, Different assessment

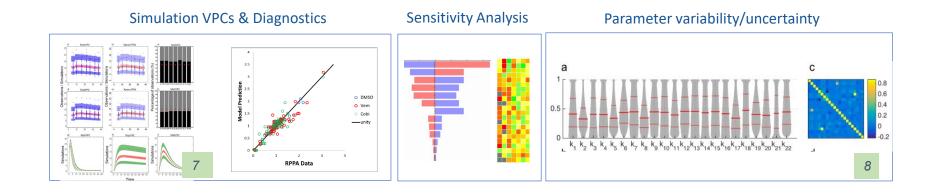
ASSESSMENT	ASSESSMENT APPROACH							
AREA	Assessment Focus	1	2	3				
	Relevance & plausibility	hi	hi	hi				
BIOLOGY	Main hypotheses & assumptions	hi	hi	hi				
	Alternate hypotheses	med	hi	hi				
	Technical QA/QC	hi	hi	hi				
IMPLEMENTATION	Model structure & parameter ranges	hi	hi	hi				
	Sensitivities and behaviors	med	med	hi				
SIMULATIONS	Reproduction of behaviors (calibration/training)	hi	hi	lo/med				
	Prediction of behaviors (validation/testing)	hi	med	lo/med				
ROBUSTNESS	Predictions, variability and uncertainty	hi	hi	med				

We Need Common/Shared "Language" & Tools

¹Friedrich, 2016, CPTP-PSP
²Gadkar et al, 2016, CPT-PSP
³InSysBio IRT
⁴Cheng et al, 2017, AAPS J
⁵Traynard et al, 2017, CPT-PSP
⁶Hosseini & Feigelman, ACoP 2018
⁷Bilouris et al, 2015, CPT-PSP
⁸Allen et al, 2016, CPT-PSP

General Approaches:


Documentation Workflows Reporting



Templates,

Tools & scripts Modules & repositories Optimization Sensitivity analysis QA/QC Dynamical analysis Model reduction analysis

Common Metrics (?) & Visualizations

Thank you!